Preface

- arXiv:arXiv:0706.3034 (50+ citations)
- PLB 670, 313 (2009) (31 citations)
- arXiv:0804.4168, accepted by PRL (50+ citations)
- arXiv:0912.0244, accepted by PRC

Viewpoint expected today!

- DiscoverMagazine The Hottest Science Experiment on the Planet
- NY Times Scientists Briefly Break a Law of Nature
- Newsday Brookhaven Lab findings eye birth of the universe
- Reuters UK Hottest temperature ever heads science to Big Bang
- Fox News Measuring the Hottest Temperatures in the Universe
- DailyMail Scientists create hottest temperature since Big Bang
- ABCNews Hottest Temperature Ever Heads Science to Big Bang
- ... And many more

Measuring the hottest Temperature in the Universe

Electromagnetic Radiation from a Quark Gluon Plasma

> Alberica Toia CERN

Outline

- Understanding and Modelling QCD and its properties
- The experimental methods: Relativistic Heavy Ion Collisions
- The **golden probe** of Quark Gluon Plasma:

Electromagnetic Radiation

- Temperature of the matter
- Medium modifications of EM spectral functions

ExtreMe Matter Institute EMMI Symposium on Perspectives in Quark-Gluon Plasma Physics March 29-30, 2010 GSI, Seminar Room Theory

Evolution of the Universe

Too hot for quarks to bind!!!
Standard Model (N/P) Physics

Quark-Gluon Plasma

Too hot for nuclei to bind

Nuclear/Particle (N/P) Physics

Hadron Gas

Nucleosynthesis builds nuclei up to He

Nuclear Force...Nuclear Physics

Universe too hot for electrons to bind

E/M Plasma

E-M...Atomic (Plasma) Physics

Today's Cold Universe

Gravity...Newtonian/General Relativity

Solid Liquid Gas

The "Little Bang" in the lab

High energy nucleus-nucleus
 Joh collisions:

- fixed target (SPS: √s=20GeV)
- colliders
 - RHIC: √s=200GeV
 - LHC: √s=5.5TeV
- QGP formed in a tiny region
 (10⁻¹⁴m) for very short time (10⁻²³s)
 - Existence of a mixed phase?
 - Later freeze-out
- Collision dynamics: different observables sensitive to different reaction stages

- 2 counter-circulating rings, 3.8 km circumference
- Top energies (each beam):
 - 100 GeV/nucleon Au+Au.
 - 250 GeV polarized p+p.
 - Mixed Species (e.g. d+Au)

Energy density in heavy ion collisions

Energy density: "Bjorken estimate" (for a longitudinally expanding plasma):

$$\epsilon_{Bj} = \frac{dE_T}{dy} \frac{1}{\tau_0 \pi R^2}$$

$$\pi R^2 \sim 150 \text{ fm}^2$$

$$\tau_0 \sim 1 \text{ fm/c} > \tau_{cross} = 2R/\gamma \sim 0.15 \text{ fm/c}$$

 $\varepsilon_{\text{init}} \sim 15 \text{ GeV/fm}^3 > \varepsilon_{\text{c}}$

- Large Transverse Energy
- Parton Energy Loss
- Parton Elliptic Flow

Electromagnetic Radiation

- Thermal black body radiation $(\gamma, \gamma^* \rightarrow e+e-)$
 - Hot matter emits thermal radiation
 - Temperature can be measured from emission spectrum
- No strong final state interaction
 - Leave reaction volume undisturbed and reach detector

Emitted at all stages of the space time development

Thermal photons (theory prediction)

S.Turbide *et al* PRC 69 014903

- High p_T (p_T>3 GeV/c) pQCD photon
- Low p_T (p_T<1 GeV/c)
 photons from hadronic Gas
- Themal photons from QGP is the dominant source of direct photons for 1<p_T<3 GeV/c
- Recently, other sources, such as jet-medium interaction are discussed
- Measurement is difficult since the expected signal is only 1/10 of photons from hadron decays

Direct Photons in Au+Au

Alternative method --- measure virtual photons

- Source of real photon should also be able to emit virtual photon
- At m→0, the yield of virtual photons is the same as real photon
- → Real photon yield can be measured from virtual photon yield, which is observed as low mass e⁺e⁻ pairs
- Advantage:
 - Reduce hadron decay background
 For m>m_π, ~80% of background
 removed
 - photon ID, energy resolution, etc
- Disadvantage
 - Reduce the yield ($\sim \alpha/3\pi \sim 1/1000$)

- This method is first tried at CERN ISR in search for direct photon in p+p at s^{1/2}=55GeV. They measure e⁺e⁻ pairs for 200<m<500 MeV, and set one of the most stringent limit on direct photon production at low p_T
 - Later, UA1 measured low mass muon pairs and deduced the direct photon cross section.

What we can learn from lepton pair emission

arXiv:0912.0244

Chiral restoration

partonic phase (QGP)

From emission rate of dilepton, the medium effect on the EM correlator as well as temperature of the medium can be decoded.

Relation between dilepton and virtual photon

arXiv:0912.0244

Emission rate of dilepton per volume

$$\frac{dR_{ll}}{d^4q} = -\frac{\alpha^2}{3\pi^3} \frac{L(M)}{M^2} \text{Im} \Pi^{\mu}_{em,\mu}(M,q;T) f^B(q_0,T)$$

Emission rate of (virtual) photon per volume

$$q_0 \frac{dR_{\gamma^*}}{d^3 q} = -\frac{\alpha}{2\pi^2} \text{Im} \Pi^{\mu}_{em,\mu}(M,q;T) f^B(q_0,T).$$

Prob. $\gamma^* \rightarrow l^+l^-$

Relation between them

 $q_0 \frac{dR_{ll}}{dM^2 d^3 q} = \frac{1}{2} \frac{dR}{d^4 q} = \frac{\alpha}{3\pi} \frac{L(M)}{M^2} q_0 \frac{dR_{\gamma^*}}{d^3 q}$ Inis relation noise for yield after space-time integral Dilepton

This relation holds for the

Virtual photon emission rate can be determined from dilepton emission rate

$$q_0 \frac{dn_{\gamma^*}}{d^3q} \simeq \frac{3\pi}{\alpha} M^2 q_0 \frac{dn_{ll}}{d^3qdM^2}$$

$$= \frac{3\pi}{2\alpha} Mq_0 \frac{dn_{ll}}{d^3qdM}. \quad \text{M} \times \text{dN}_{\text{ee}}/\text{dM} \text{ gives virtual photon yield}$$

For $M \rightarrow 0$, $n_{\nu}^* \rightarrow n_{\nu}$ (real); real photon emission rate can also be determined

Theory prediction of dilepton emission

arXiv:0912.0244

Usually the dilepton emission is measured and compared as dN/dp_TdM

The mass spectrum at low p_T is distorted by the virtual photon \rightarrow ee decay factor 1/M, which causes a steep rise near M=0

qq annihilaiton contribution is negligible in the low mass region due to the M² factor of the EM correlator

In the caluculation, partonic photon emission process $q+g\rightarrow q+\gamma^*\rightarrow qe^+e^-$ is not included

Theory calculation by Ralf Rapp

Virtual photon emission rate

arXiv:0912.0244

PHENIX Physics Capabilities

designed to measure rare probes:

Au+Au & p+p spin

- + high rate capability & granularity
- + good mass resolution and particle ID
- limited acceptance

electrons, photons, hadrons

- charmonium J/ψ , $\psi' \rightarrow e^+e^-$
- vector meson ρ , ω , $\phi \rightarrow e^+e^-$
- high p_T π^{o} , π^{+} , π^{-}
- direct photons
- open charm
- hadron physics
- 2 muon arms: muons
 - "onium" J/ ψ , ψ ', Y -> μ + μ -
 - vector meson $\phi \rightarrow \mu^+\mu^-$
 - open charm
- combined central and muon arms: charm production DD -> eµ

global detectors

forward energy and multiplicity

event characterization

Dilepton Signal

- LMR: $m_{ee} < 1.2 \text{ GeV/c}^{\frac{m_{ee} (GeV/c^2)}{2}}$
 - LMR I (p_T >> m_{ee})
 quasi-real virtual photon region. Low
 mass pairs produced by higher order
 QED correction to the real photon
 emission
 - LMR II (p_T<1GeV)
 <p>Enhancement of dilepton discovered at SPS (CERES, NA60)

- Low Mass Region: mee < 1.2 GeV/c²
- ^{10³} –Dalitz decays of pseudo-scalar mesons
- ₁₀⁴ –Direct decays of vector mesons
- –In-medium decay of ρ mesons in the
 10⁻⁵ hadronic gas phase
 - Intermediate Mass Region:

 $1.2 < m_{ee} < 2.9 \text{ GeV/c}^2$

- 10⁻⁷ –correlated semi-leptonic decays of charm quark pairs
- 10° -Dileptons from the QGP
- High Mass Region: m_{ee}> 2.9 GeV/c²
 - -Dileptons from hard processes
 - Drell-Yan process
 - correlated semi-leptonic decays of heavy quark pairs
 - Charmonia
 - Upsilons
 - →HMR probe the initial stage
 - -Little contribution from thermal radiation

Hadronic Cocktail Measurement

Parameterization of PHENIX π[±],π⁰ data
 π⁰ = (π⁺+π⁻)/2

$$E \frac{d^{3}\sigma}{d^{3}p} = \frac{A}{\left(exp(-ap_{T} - bp_{T}^{2}) + p_{T}/p_{0}\right)^{n}}$$

• Other mesons:fit with m_T scaling of π^0 $p_T \rightarrow \sqrt{(p_T^2 + m_{meson}^2 - m_{\pi}^2)}$ fit the normalization constant

→All mesons m_T scale!!!

- Hadronic cocktail was well tuned to individually measured yield of mesons in PHENIX for both p+p and Au+Au collisions.
- Mass distributions from hadron decays are simulated by Monte Carlo.
- π⁰, η, η', ω, φ, ρ, J/ψ, ψ'
- Effects on real data are implemented....

Cocktail Comparison p+p

- 2.25pb⁻¹ of triggered p+p data
- Data absolutely normalized
- Excellent agreement with Cocktail
- Filtered in PHENIX acceptance

Light hadron contributions subtracted Heavy Quark Cross Sections:

- Charm: integration after cocktail subtraction
 σ_{cc} = 544 ± 39^{stat} ±142^{syst} ± 200^{model} μb
- Simultaneous fit of charm and bottom:
 - $-\sigma_{cc} = 518 \pm 47^{stat} \pm 135^{syst} \pm 190^{model} \mu b$
 - $-\sigma_{bb} = 3.9 \pm 2.4^{stat} + 3/-2^{syst} \mu b$
- Charm cross section from single electron measurement [PRL97, 252002 (2006)]:
 - $-\sigma_{cc} = 567 \pm 57 \pm 193 \,\mu b$

arXiv:0912.0244

Cocktail Comparison Au+Au

- Data absolutely normalized
- Light hadrons cocktail
- Charm normalized $N_{coll} \times \sigma_{pp}$ Filtered in PHENIX acceptance

- Low Mass Region: large enhancement 150 < m_{ee} < 750 MeV 4.7±0.4stat ±1.5syst ±0.9model
- Intermediate Mass Region: dominated by charm ($N_{coll} \times \sigma_{cc}$) PYTHIA
 - Random cc correlation
- Single electron measurement
 - High p_⊤ suppression
 - Flow
 - →Expected modifications in the pair invariant mass
 - → random cc correlation? →Room for thermal contribution?

arXiv:0912.0244

Centrality Dependence

Centrality	Enhancement (±stat ±syst ±model)		
00-10%	$7.6 \pm 0.5 \pm 1.3 \pm 1.5$		
10-20%	$3.2 \pm 0.4 \pm 0.7 \pm 0.6$		
20-40%	$1.4 \pm 0.3 \pm 0.4 \pm 0.3$		
40-60%	$0.8 \pm 0.3 \pm 0.4 \pm 0.2$		
60-92%	$1.5 \pm 0.3 \pm 0.5 \pm 0.3$		
Min.Bias	$4.7 \pm 0.4 \pm 1.5 \pm 0.9$		

• π^0 region:

arXiv:0912.0244

consistent with cocktail

Low Mass Region:

yield increases faster than proportional to N_{part}

enhancement from binary annihilation (ππ or qq)?

Momentum Dependence

- p+p in agreement with cocktail
- Au+Au low mass enhancement concentrated at low p_T

LMR I: Virtual Photons

- Any source of real γ can emit γ * with very low mass.
- If the Q² (=m²) of virtual photon is sufficiently small, the source strength should be the same
- The ratio of real photon and quasi-real photon can be calculated by QED
- → Real photon yield can be measured from virtual photon yield, which is observed as low mass e⁺e⁻ pairs

Kroll-Wada formula

$$\frac{d^{2}N}{dM_{ee}dN_{\gamma}} = \frac{2\alpha}{3\pi} \sqrt{1 - \frac{4m_{e}^{2}}{M_{ee}^{2}}} \left(1 + \frac{2m_{e}^{2}}{M_{ee}^{2}}\right) \frac{1}{M_{ee}} S$$

S: Process dependent factor

- Case of Hadrons • $S = |F(M_{ee}^2)|^2 \left(1 - \frac{M_{ee}^2}{M_{hadron}^2}\right)^3$
 - Obviously S = 0 at $M_{ee} > M_{hadron}$
- Case of γ*
 If p_T²>>M_{ee}²

$$S=1$$

 Possible to separate hadron decay components from real signal in the proper mass window.

Determination of γ^* fraction, r

 $r = \text{direct } \gamma^*/\text{inclusive } \gamma^*$ determined by fitting the following function for each p_T bin.

$$f_{data}(M_{ee}) = (1 - r) \cdot f_{cocktail}(M_{ee}) + r \cdot f_{direct}(M_{ee})$$

- f_{direct} is given by Kroll-Wada formula with S = 1.
- f_{cocktail} is given by cocktail components
- Normalized to the data for m<30 MeV/c²
- Fit in 120-300MeV/c² (insensitive to π^0 yield)
- Assuming direct γ* mass shape
- $\chi^2/NDF = 12.2/6$

Direct measurement of S(m_{ee}, p_T)

$$R(m, p_T) \simeq \frac{dN_{\gamma^*}^{\text{excess}}(m, p_T)}{dp_T} / \frac{dN_{\gamma}^{\text{incl}}(p_T)}{dp_T}$$
$$= S(m, p_T) dN_{\gamma}^{direct}(p_T) / dN_{\gamma}^{\text{incl}}(p_T)$$

No indication of strong modification of EM correlator at this high p_T region (presumably the virtual photon emission is dominated by hadronic scattering process like $\pi+\rho \rightarrow \pi+\gamma^*$ or $q+g \rightarrow q+\gamma^*$)

Extrapolation to M=0 should give the real photon emission rate

arXiv:0912.0244

Fraction of direct photons

Base line

Curves: NLO pQCD calculations with different theoretical scales done by W. Vogelsang.

$$\left(d\sigma_{\gamma}^{NLO}/dp_{T}\right)/\left(d\sigma_{\gamma}^{NLO}/dp_{T}+d\sigma_{\gamma}^{hadron}/dp_{T}\right)$$

p+p

- Consistent with NLO pQCD
 - better agreement with small µ

Au+Au

Clear enhancement above NLO pQCD

Direct Photon Spectra

- Direct photon
 - real (p_T>4GeV)
 - virtual (1<p_T<4GeV & m_{ee}<300MeV)
- pQCD consistent with p+p down to p_T=1GeV/c
- Au+Au above N_{coll} x p+p for p_T < 2.5 GeV/c
- Au+Au = pQCD + exp: $T_{ave} = 221 \pm 19^{stat} \pm 19^{syst} MeV$

arXiv:0912.0244

Comparison to Hydro models

- From data: Au+Au = pQCD + exp: $T_{ave} = 221 \pm 19^{stat} \pm 19^{syst}$
- Comparison to hydrodynamical models:
 - p_T<3 GeV/c thermal contribution dominates over pQCD.
 - Assume formation of a hot QGP with 300 MeV < T_{init} < 600 MeV < 0.6 fm/c < τ_0 < 0.15 fm/c
 - Models reproduce the data within a factor of two.

From data: T_{ini} > 220 MeV > T_{C} From models: T_{ini} = 300 to 600 MeV τ_{0} = 0.15 to 0.5 fm/c

LMR II

arXiv:0912.0244

Large and broad enhancement → S(m_{ee}) no longer const

- <R>=0.177±0.032
- Consistent with higher p_T values

Extrapolate the spectrum of direct photons

- For $0.8 < p_T < 1.0$ GeV/c $< R > = 0.177 \pm 0.032$ consistent with higher p_T
- Decay photons spectrum steeper than direct γ spectrum
- At lower p_T ,
 the expected direct photon fraction $r = \text{direct } \gamma / \text{inclusive } \gamma = \text{direct } \gamma / \text{(direct + decay)} \gamma \leq 0.17$
- For $0.4 < p_T < 0.6 \text{ GeV/c}$ R(m) > 0.17
- →The enhancement in the low p_T region is larger than that expected from internal conversion of direct photons.

Dilepton Spectra

Acceptancecorrected

Agreement with cocktail + internal conversion of direct photons

Au+Au

p+p

- p_T>1GeV/c: small excess → internal conversion of direct photons
- p_T<1GeV/c: large excess for 0.3<m_{ee}<1 GeV
- →Low temperature component with strong modification of EM correlator?

Average Temperature of the sources

arXiv:0912.0244

 $m_T - m_0$ spectrum of Excess = Data – (cocktail+charm)

• Fit:
$$\frac{d^2N}{2\pi m_T dm_T dy} = A_1 \cdot \exp{-\frac{m_T}{T_1}} + A_2 \cdot \exp{-\frac{m_T}{T_2}}$$
 or $\frac{d^2N}{2\pi m_T dm_T dy} = A_1 \cdot \exp{-\frac{m_T}{T_1}} + 1$ Direct γ

$$rac{d^2N}{2\pi m_T dm_T dy} = A_1 \cdot \exp{-rac{m_T}{T_1}} + A_1 \cdot \operatorname{Direct} \gamma$$

 $T_1 = 92.0 \pm 11.4^{stat} \pm 8.4^{syst} \text{ MeV}$

 $T_2 = 258.4 \pm 37.3^{\text{stat}} \pm 9.6^{\text{syst}} \text{ MeV}$

 $\chi^2/NDF = 4.00/9$

 $\chi^2/NDF = 16.6/11$

ow mass enhancement has inverse slope of ~100 MeV.

Theory comparison

- $\pi\pi$ annihilation + modified ρ spectral function
 - Broadening
 - Mass shifting
 - Both
- Insufficient to explain data

Theory comparison II

Even when looking differentially in various p_T bins the theoretical calculations are insufficient to explain the

data

High p_⊤ region:

here we isolated a contribution arising from

- $\pi+\rho \rightarrow \pi+\gamma^*$ (typically included) or
- q+g→q+γ*
 (not included so far)

Low p_⊤ region:

where the enhancement becomes large and its shape seems incompatible with unmodified $q+g\rightarrow q+\gamma^*$

Theory comparison III

- The theoretical calculations are insufficient to explain the data
- High p_T: they are too soft (except for HSD which does not include partonic contribution)
- Low p_T: they are too hard to explain the enhancement (T~100 MeV)
 what is missing?

Summary

- EM probes ideal "penetrating probes" of dense partonic matter created at RHIC
- Double differential measurement of dilepton emission rates can provide
 - Temperature of the matter
 - Medium modification of EM spectral function
- PHENIX measured dilepton continuum in p+p and Au+Au

p+p

Low Mass Region

- Excellent agreement with cocktail
 - LMR I deduce photon emission in agreement with pQCD
 - LMR II
 Excellent agreement with cocktail

Au+Au

Low Mass Region

- Enhancement above the cocktail 4.7±0.4^{stat} ±1.5^{syst}±0.9^{model}
- LMR I deduce photon emission exponential above pQCD, T>200 MeV
- LMR II
 - Centrality dependency: increase faster than N_{part}
 - p_T dependency: enhancement concentrated at low p_T, T ~ 100 MeV

Intermediate Mass Region

Extract charm and bottom cross section

Intermediate Mass Region

Agreement with PYTHIA: coincidence?

The new frontier ...

"It's still the last frontier you might say. We're still out here dancing on the edge of the world." (Lawrence Ferlinghetti)

Central collisions	SPS	RHIC	LHC
√s (GeV)	17	200	5500
dN _{ch} /dy	430	700	1-3×10 ³
ε (GeV/fm³)	3	5-10	15- 60
V _f (fm³)	10 ³	7x10 ³	2x10 ⁴
T/T _c	> 1	2	3-4

• LHC

- hotter, larger, longer-lived QGP → wQGP?
- Hard Probes
 - Hard parton quenching → ε
 - Quarkonia and photons → T
 - − jet fragmentation function $\rightarrow \gamma / Z^0 + \text{jet}$
- Probe unexplored small-x region with heavy quarks at low p_T and/or forward y
- $dN_{ch}/d\eta$ (p+p @ LHC) ~ $dN_{ch}/d\eta$ (Cu+Cu @ RHIC) \rightarrow pp-QGP?

RHIC upgrades (STAR/PHENIX)
 Quantitative analysis of sQGP
 New regions in the phase-space

- e-RHIC: electron ion collider
 - Momentum distribution of gluons G(x,Q²)
 - Space-time distributions of gluons in matter
 - Interaction of fast probes with gluonic medium?
 - Role of color neutral excitations

FAIR

Search for the critical point

EM Probes at LHC

DILEPTONS

M_{ee} [GeV]

Low p_T

- Thermal/bulk photons (QGP + hadronic phase)
- Photons from jet-medium interactions
 - Jet-photon conversion, Induced photon bremsstrahlung
 - Cross sections forward/backward peaked
 - Yields approximately proportional to the jet distributions
 Sensitivity to early time jet distributions
 - Longer path lads to increased production → Negative v2

High p_T

H.Van Hees and R.Rapp

- Prompt photons from initial hard processes
 - No final state effects at all.
- Fragmentation/vacuum bremsstrahlung
 - Sensitivity to medium effects in the final state

 For m>1GeV relatively stronger QGP radiation: comparable to DD but energy loss???

PHOTONS

The End

Charm and bottom cross sections

CHARM

Dilepton measurement in agreement with single electron, single muon, and with FONLL (upper end)

BOTTOM

Dilepton measurement in agreement with measurement from e-h correlation and with FONLL (upper end)

First measurements of bottom cross section at RHIC energies!

Future EM Measurements at RHIC

- Improve measurement in the LMR
 - → reduce combinatorial background
 - → Hadron Blind Detector
 - HBD is fully operational
 - Proof of principle in 2007
 - Successful data taking with p+p 2009
 - Ready for large Au+Au data set in 2010 (which is starting right now)

- Improve measurement in the IMR
 - → disentangle charm and thermal contribution
 - → Silicon Vertex Detector
 - Coming soon...

The Analysis

Electron Identification

- emission and measurement of Cherenkov light in the Ring Imaging Cherenkov detector
- → measure of min. velocity
- production and of EM shower in the Electro- Magnetic Calorimeters (PbSc, PbGl)
- → measure of energy E

- •electron: E ≈ p
- •hadron: E < p
- after RICH cuts, clear electron signal
- •cut on E/p cleans electron sample!
- background
 - photon conversions
 - random associations (next slide)
- main background source: random combination of hadron track/shower with uncorrelated RICH ring
- •"standard" subtraction technique: flip-andslide of RICH
- •swapped background agrees in shape with E/p distribution of identified hadrons
- •background increases with detector occupancy (can reach ~30 % in central Au+Au collisions)

Photon conversion rejection

γ→e+e- at r≠0 have m≠0(artifact of PHENIX tracking: no tracking before the field)

- effect low mass region
- have to be removed

Conversion removed with orientation angle of the pair in the magnetic field

Overlapping pairs

- when a pion points to the same ring as an electron, it is associated to the same ring, therefore considered an electron
 This happens for a typical values of opening angle (different for like and unlike) which folded with the average momentum of the electron corresponds to a particular invariant mass (different for like and unlike)
 - → cut: requested minimum distance between the rings (~1 ring diameter)
- Cut applied as event cut
 - Real events: discarded and never reused
 - Mixed events: regenerated to avoid topology dependence

Background shape: like sign

- Shape determined with event mixing
 - Excellent agreements for likesign pairs
- Normalization of mixed pairs
 - Small correlated background at low masses
 - normalize B_{++} and B_{--} to N_{++} and N_{--} for $m_{ee} > 0.7$ GeV/c²
 - Normalize mixed B₊ pairs to N₊ = 2√N₊₊N₋
 - Subtract correlated background
- Systematic uncertainties
 - statistics of N₊₊ and N₋₋ : 0.12%
 - different pair cuts in like and unlike sign: 0.2 %

Differential Background studies

Transverse Momentum Dependence

Centrality	p_0	χ^2/NDF	χ^2 test	p-value	max dev.
0-10%	$6.3 \pm 8.8 \times 10^{-4}$	30.2/19	1.05	0.25	0.0014
10-20%	$-9.4 \pm 1.4 \times 10^{-4}$	18.6/19	0.97	0.61	0.0018
20-40%	$-2.4 \pm 1.8 \times 10^{-3}$	18.7/19	1.02	0.40	0.0034
40-60%	$-8.5 \pm 4.9 \times 10^{-3}$	21.9/19	1.65	0.02	0.0071
60-92%	$-1.8 \pm 1.6 imes 10^{-2}$	21.5/14	1.51	0.04	0.0321
00-92%	$2.6 \pm 6.3 \times 10^{-4}$	27.6/19	0.92	0.83	0.0010
$p_T < 1 \text{ GeV}/c$	$9.2 \pm 5.1 \times 10^{-4}$	18.9/18	0.95	0.73	0.0011
$1 < p_T < 2 \text{ GeV}/c$	$-3.4 \pm 1.6 \times 10^{-3}$	27.9/18	0.91	0.84	0.0029
$p_T > 2 \text{ GeV}/c$	$-9.6 \pm 5.4 \times 10^{-3}$	15.2/18	0.97	0.63	0.0038

Correlated Background

Cross pairs simulated with decay generator Jet pairs simulated with PYTHIA normalized to like sign data same normalization for unlike-sign

Alternative method

Correct and subtract like sign data

$$S_{+-} = N_{+-} - 2\sqrt{N_{++}N_{--}} \cdot \frac{B_{+-}^{\text{comb}}}{2\sqrt{B_{++}^{\text{comb}} \cdot B_{--}^{\text{comb}}}}$$

Uncertainty of Background Subtraction

Cross check Converter Method

We know precise radiation length (X_0) of each detector material. The photonic electron yield can be measured by increase of additional material (photon converter was installed)

The non-photonic electron yield does not increase

Photonic single electron: x 2.3

Inclusive single electron :x 1.6

Combinatorial pairs :x 2.5

Photon Converter (Brass: 1.7% X_0)

The raw subtracted spectrum

Same analysis on data sample with additional conversion material

→ Combinatorial background increased by 2.5

Good agreement within statistical error

From the agreement converter/non-converter and the decreased S/B ratio scale error = 0.15±0.51% (consistent with the 0.25% error we assigned)

Efficiency Correction

Acceptance Correction

Other measurements

Viscosity of "near perfect" fluid

- viscous fluid
 - supports a shear stress
 - viscosity η defined as
 - dimensional estimate

$$\frac{F_x}{A} = -\eta \frac{\partial v_x}{\partial y}$$

$$\eta \approx (momentum \ density) \times (mean \ free \ path)$$

$$\approx n \ \overline{p} \ mfp = n \ \overline{p} \frac{1}{n-1} = \frac{\overline{p}}{n-1}$$

early hydrodynamic calculations of the medium at RHIC have assumed

zero viscosity: $\eta = 0$, i.e. a "perfect fluid"

conjectured lower quantum limit

derived first in (P. Kovtun, D.T. Son, A.O. Starinets, Phys.Rev.Lett.94:111601, 2005)

motivated by AdS/CFT (Anti de Sitter space / Conformal Field Theory)

correspondence (J. Maldacena: Adv. Theor. Math. Phys. 2, 231, 1998)

- "ordinary" fluids
 - Gas: η/s↑ for T↑ (because ↑)
 divergent viscosity of ideal gas
 - Liquid: η/s↓ for T↑ (lower T easier to transport p)
 - \rightarrow η /s has a minimum at the critical point?
- "RHIC fluid"?

He (at λ point): $\eta/s \sim 9 \hbar/4\pi$

Measuring viscosity

- need observables that are sensitive to shear stress
- damping (flow, fluctuations, heavy quark motion) ~ η/s
 - estimates of η/s based on flow and fluctuation data
 - indicate small value as well
 - close to conjectured limit
 - significantly below η /s of helium ($4\pi\eta$ /s ~ 9)
- In chiral limit: η/s=15/16π * f₄/T⁴
 - T \rightarrow 0: η/s \rightarrow ∞
 - − T→ ∞: $\eta/s \sim 1/g^4$ where $g^2 \sim 1/\ln(T/\Lambda_T)$
 - \rightarrow Minimum at T_c?

Open Charm

- hard process ($m_q \gg \Lambda_{QCD}$)
 - at leading order (LO):
 - quark-antiquark annihilation
 - gluon fusion
 - higher order processes important at large √s

p+p: BASELINE

- comparison with FONLL calculation:
 - Fixed Order Next-to-Leading Log pQCD
 (Cacciari, P. Nason, R. Vogt PRL95,122001 (2005))
- bottom is important at high p_T!

BOTTOM CONTRIBUTION

- electron-hadron correlations
 - sensitive to bottom vs. charm due to the different masses of D and B mesons

Probing the medium in Au+Au

- binary scaling of total e[±] yield from heavy-flavor decays
 - → hard process production and no destruction (as expected)
- high p_T e[±] suppression increasing with centrality
 - similar to π^0 suppression (a big surprise)

Nuclear modification factor R_{AA}

- similar to light hadrons
 - !!! kinematics: $p_T(e^{\pm}) < p_T(D)$
 - –intermediate p_⊤: quark mass hierarchy
 - -high p_T : $R_{AA}(e^{\pm}) \sim R_{AA}(\pi^0) \sim R_{AA}(\eta)$
- bottom contribution at high p_T ???

- radiative ΔE only would need a very large colour opacity with static scattering centers (odd for b) Djordjevic et al., PLB 632(2006)81

Armesto et al., PLB 637(2006)362) - collisional ∆E included reduces R_{AA} significantly, but the challenge persists (also for light quarks) Wicks et al., NPA 784(2007)426

alternative approaches

Adil & Vitev, PLB 649(2007)139

van Hees & Rapp, PRC 73(2006)034913)

- collisional dissociation of heavy mesons
- contribution from baryon enhancement

p_ (GeV) Adil & Vitev. PLB 649(2007)139 PHENIX 0.5(e++e), 0-10% Au+Au STAR 0.5(e++e), 0-5% Au+Au STAR 0.5(e++e), 0-12% Au+Au Central Au+Au Sorensen & Dong, PRC 74(2006)024902 p_T [GeV]

Wicks et al., NPA 784(2007)426

e/(b+c)

PHENIX

DGLV Rad on

Does charm thermalize?

- transport of heavy quarks the medium
 - Rapp & van Hees (PRC 71, 034907 (2005))
 - small relaxation time required for simultaneous fit of R_{AA} and v₂
 - → diffusion coefficient D_{HQ}
 - -Moore & Teaney (PRC 71, 064904 (2005))
 - difficulties to describe R_{AA} and v₂ simultaneously
 - relate D_{HQ} with viscosity density of the medium
- suggests
 - $-\eta/s = (1.3-2.0)/4\pi$
 - -close to a conjectured lower bound $(\eta/s = 1/4\pi)$

• consistent with other estimates of η /s based on flow and fluctuation measurements for light hadrons

Heavy quarkonia at RHIC

- Same suppression observed at RHIC (T~400 MeV) and SPS (T~200MeV) !?!
- At RHIC: forward rapidity (where energy density should be smaller) suppressed more than mid-rapidity !?!
- Coalescence:
 cc regeneration compensates screening
 (there are more cc pairs at mid-rapidity)
 → J/ψ produced by statistical hadronization at the phase boundary as all other hadrons?
- Sequential dissociation: only ψ' and χ_c (~40% feed-down to J/ψ) melt Direct J/ψ survives at RHIC → T₀<2T_c
- Saturation could suppress forward J/ψ in AuAu

Other dilepton measurements

Dielectron pairs —the history I low energy

Data: R.J. Porter et al.: PRL 79 (1997) 1229

BUU model: E.L. Bratkovskaya et al.: NP A634 (1998) 168

transport + in-medium spectral functions

DLS measured an excess of dielectron pairs over the expected yield Never fully explained

HADES (high acceptance, resolution, rate capability): first measurements

excess over standard known sources compared with theory calculations

Agreement with DLS

Excess possibly explained with bremsstrahlung

Dielectron pairs -the history II

high energy

CERES measured an excess of dielectron pairs over the expected yield, rising faster than linear with centrality Attributed to in-medium modification of ρ spectral function from $\pi\pi$ annihilation

Thermal radiation: window 0.5 to 2.5 GeV

- direct photons (HELIOS, WA80/98)
- di-lepton pairs (NA38/50)

Excess of dilepton yield measured above

charm pairs

m_{en} (GeV/c²)

The enhancement is concentrated at low p_T

Dielectron pairs —the history II

III generation

NA60 First measurement of the ρ spectral function Clear excess above the cocktail ρ , centered at the nominal ρ pole and rising with centrality

 p_T spectra: Steepening at low m_T contrary to expectation for radial flow; relation to pion spectra?

Monotonic flattening of spectra with mass up to M=1 GeV

Strong rise of T_{eff} with dimuon mass, followed by a sudden drop for M>1 GeV

Rise reminiscent of radial flow of a hadronic source

Drop signals sudden transition to low-flow source, i.e. source of partonic origin (here $qq \rightarrow \mu\mu$)

IMR: measurement of muon offsets $\Delta\mu$ attributes the IMR excess to prompt dimuon

